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Abstract

The goal of course project is to explore vision-
based techniques for non-rigid object manipula-
tion for longer horizon tasks by a robot arm. To
accomplish this, the robot arm will complete a
robot bandaging task, where the robot will learn
to wrap a bandange around an object shaped like
a wrist (simplified to a cylinder). A key motiviat-
ing factor behind this project’s goal is that many
day to day tasks include manipulation of 2D de-
formable objects such as cloth, wraps, etc. Also,
developing a general approach to state estimation
of the object that is robust to changes in the envi-
ronment (i.e occlusion) and training a policy that
can be evaluated under many testing scenarios to
provide benchmarks and relibility were important
learning objectives for this project.

1. Problem
Bandaging is a common task done in the medical field that
consists of wrapping a bandage around an appendage with
tension for added stability or wound care. Specifically, the
task itself involves long-horizon manipulation of a highly
deformable bandage around a wrist multiple times with a
fixed tension of the bandage.

2. Prior work
While the combined difficulty of manipulating a 2D de-
formable object which is more prone to self-occlusions than
just square cloth

2.1. Cable Manipulation with a Tactile-Reactive
Gripper

2.1.1. OVERVIEW

This work utilizes visuo-tactile sensor feedback to control a
gripper/arm system to follow along a cable using an LQR
controller to center cable within gripper fingertips, while
using a PD controller to control the gripping force and
therefore friction along the cable. (She et al., 2020)

2.2. Review

This approach in manipulating highly deformable objects
does not need to generate a state representation of the cable,
but just controls features of the cable as seen through the
visuo-tactile gripper.

While this has been shown to be robust in local control sce-
narios, it has trouble generate an scene understanding that
would be necessary to grasp the bandage initially and make
regrasps during the task execution. Additionally, valida-
tion in simulation is tricky without an accurate visuo-tactile
sensor model represented in simulation.

Although, such an approach may be used reliably as a local
grasp planner for grasp adjustments along the bandage.

2.3. Learning Rope Manipulation Policies Using Dense
Object Descriptors Trained on Synthetic Depth
Data

2.3.1. OVERVIEW

This work applies work done in (Florence et al., 2018) to
manipulating rope, a 1D highly-deformable object.

The main contributions include (i) showing synthetic depth
and image data of rope can effectively train a correspon-
dence model to output a dense representation of rope that
generalizes to real images of rope and is interpretable due
to a focus on its geometric structure, named dense depth ob-
ject descriptors (DDODs), (ii) a geometric-based policy can
utilize the dense representation to complete non-trivial rope
manipulation tasks such as tying knots and moving ropes
to new configurations specified in demonstration videos not
seen during training.

2.3.2. TRAINING DENSE DESCRIPTOR MAPPING
FUNCTION USING SYNTHETIC DATA

In order to extend the dense representation to rope, the sim-
ulated mesh representation consists of ”over fifty thousand
ordered vertices of known global coordinates and an under-
lying Bezier curve with M = 12 control points, P1, ..., PM ,”
adding reliability of having more reliable ground truth data
and is more easily accessible (Sundaresan et al., 2020).
Then, depth images of the scene and RGB images are used
to generate a point-pair configuration of the scene with the
3D representation.



To collect the training data, the simulated rope configuration,
described by pairs of points on the rope and synthetic depth
and RGB pixels, is perturbed randomly to create a new
configuration, represented by T1 to T2. The corresponding
points in T1 T2 are ”mapped into the descriptor space and
encoraged to be close together” (Sundaresan et al., 2020).
This mapping fdense(∗) is learned using a Siamese network
with pixelwise contrastive loss.

2.3.3. GEOMETRY-BASED POLICY FOR VISUAL
IMITATION USING LEARNED DESCRIPTORS

Given a goal demonstration video with RGB and depth, each
configuration of the rope is mapped into descriptor space,
where it can be possible to compare the goal configuration
(final configuration in the demonstration) to the current
configuration of the rope. Taking the K-nearest-neighbors
for given descriptors on current rope configurations and
goal configurations, the points in the descriptor space with
the greatest L2 distance error are selected and an action is
taken on the 3D point corresponding to descriptor point of
the current rope, then minimizing the error. This process
is repeated for the highest error between pairs of points in
descriptor space until a goal threshold is reached.

2.4. Review

This paper provides a strong baseline for utilizing synthetic
data for non-rigid object representation. Although, a key
assumption that needed more explanation was that ground
truth correspondences are difficult to obtain for a real rope.
Given object classes that cannot be easily represented like a
rope such as gauze or materials that wrap around other ob-
jects, it causes synthetic data representation to fall through.
Additionally, the geometric policy was finetuned and engi-
neered for the specific task, making it more difficult to adapt
for other problem configurations. Further, to potentially
provide a better representation of the lower-level features
that may be difficult for just a vision system as shown by
situations such as occlusion and sparsity in the descriptor
space, multi-modal data collection such as high-dimensional
tactile data that may be mapped into the descriptor space
may have potential.

3. Current Approach
From discussions of the prior work, gaps still exist in ad-
dressing a long-horizon, highly-deformable object manip-
ulation problem such as resiliance to occlusions, having a
policy learner that is not structurally engineered for a task,
and using multimodal inputs.

From a systems perspective, the current approach fuses the
prior works ((Florence et al., 2018),(She et al., 2020), and
(Sundaresan et al., 2020)) to achieve bandage state estima-

tion, high-level policy training using imitation learning, and
local bandage control policy using visuo-tactile sensor.

This semester, bandage state estimation is being focused
on, while setting up environments and training procedures
for the high-level policy training and local control policy
development.

Implementing the presented task will involve developing
methods to robustly estimate the state of the non-rigid object
which be observations for learning a imitiation learning pol-
icy from human demonstrations. For robust state estimation,
results of (Florence et al., 2018) will be extended through
the addition of a custom fabric dataset that is curated in the
simulator to increase the diversity of the dataset.

Figure 1. Preliminary experimental setup of the bandaging task

4. Checkpoints
4.1. Bandage Object State Estimation (this semester)

1. Generate a bandage dataset

2. Learn a dense correspondence mapping on the bandage
dataset

3. Evaluate using pixel match error

4. Based on results, integrate visuo-tactile state estimation
into network, or use point cloud representations, or
utilize alternative latent representation

4.2. High-level Policy Learning

1. With the latent representation of bandage, collect train-
ing trajectories of successful task completions

2. Using human goal trajectories, train DAGGER imita-
tion learning model and alternative models that remove
distribution shift problem to create baselines

4.3. Local Control Policy

1. Reproduce results from (She et al., 2020) to have grip-
per follow bandage and control gripping force and
therefore friction/tension of bandage



2. Integrate with high-level policy

5. Implementation
5.1. Curating the Custom Bandage Dataset

To represent the bandage, the bandage was represented as
connected points that can each move freely in space, and
each point in R3 space on the fabric is mapped to pixel
space to generate a set of pixels corresponding to each point
on the bandage. Then, a unique skin was applied to the
bandage that resulted in a change in appearance. A total of 7
skins were used and around 50 points were used to represent
the bandage.

In order to reach the diversity in the dataset, the state of the
cloth was randomized by initializing each point on the cloth
by a crumple factor that is randomized. Then, after running
the simulation until the cloth is at rest, the cloth is placed
in a random position. In a similar fashion, the location of
the camera was varied across each iteration. A sample is
exemplified in Figure 2.

Developing the simulation was a result of generating syn-
thetic representation of the fabric in Blender utilizing ap-
proaches by (Sundaresan et al., 2020) which used Blender
for generating images of rope and then utilized domain ran-
domization techniques for an efficent object representation
that transfered well into the real world.

Then, a gym environment was created for the PyBullet envi-
ronment that initialized the robot intrinsic vectors for repre-
sentating the robot state, although state transitions (actions)
were not implemented yet as the human controller is in de-
velopment that would make it easier to test state transitions.
Finally, generating a basic fabric reprentation was generated
within pybullet and the gym environment.

As will be mentioned in the results, the PyBullet environ-
ment had difficulty in representing thin cloths and also a
representation such that it was easy to change the cloth skin
and visual, therefore the simulation enviornment was then
ported to Mujoco as shown in Figure 2, where it became a
lot easier to change the dimensions and initial position of
the cloth without breaking the simulation (Todorov et al.,
2012). Additionally, the simulation environment in Mujoco
did a much better job in simulation of the cloth dynamics
and the contact forces between the gripper and the cloth.

In total, 1000 unique cloths states were generated each
segmented and domain-randomized using 5 different scenes.
Other preprocessing technqiues include random rotations,
and lighting changes.

5.2. Training Details

Introduced in (Florence et al., 2018),

Figure 2. Preliminary simulated setup in MuJoCo of the bandaging
task with the fabric-like object representing the bandage, a Franka
Emika Panda robot, and a cylindrical wrist setup for simplicity

Described by pairs of points on the cloth and synthetic depth
and RGB pixels, the cloth is perturbed randomly to create
a new configuration, represented by T1 to T2. The corre-
sponding points in T1 T2 are ”mapped into the descriptor
space and encoraged to be close together”. This mapping
fdense(∗) is learned using a Siamese network with pixelwise
contrastive loss, which was just shown.

Given that we aim to have the fabric representation be robust
to many different views, colors, occlusion states, etc, we use
the following loss function to evaluate the similarity of the
fabrics. The similarity is represented by a match m and a
non-match nm, which is applied to each pixel between two
randomly selected images from the dataset. The match and
non-match are propgated through the 3D representation of
the fabric into pixel space, allowing for comparision directly
in pixel space that is used at both training and test time,
similar to how the robot would operate. Additionally, we
choose a margin M hyperparameter that represents the buffer
between a match and non-match in the latent representation
outputted by fdense(∗).

Lm(Ia, Ib) =
1

Nm

∑
m

D(Ia, ua, Ib, ub)
2

Lnm(Ia, Ib) =
1

Nnm

∑
nm

max(0,M −D(Ia, ua, Ib, ub)
2)

L(∗) = Lnm + Lm

It should be noted that all fabrics are the same geometri-
cally and similar visually, therefore the loss function reflects
this by ensuring the points in 3D space are ”close” in the
network’s latent representation of the object. If we define
f(∗) as the network’s mapping function from pixel space
to its latent space, then each pixel mapping should be close



together. This is validated by using L2 loss across the net-
work’s output.

Further, to further segment the latent space for each ob-
ject, cross-object data representations were used to generate
matches and non-matches.

For training the network, a pretrained 34-layer and stride-8
ResNet was used as backbone and then bilinearly upsam-
pled until it reached the original image shape of 240 x 320
and has channel size D, the size of the descriptor space.
Alternative methods that were intially trialed were using
an encoder latent space representation using 3 convolution
layers, each with pooling layers.

6. Results
6.1. Qualitative Evaluation

From Figure 2 (input visualization), Figure 3 (output de-
scriptor visualization with D=3), and Figure 4 (output de-
scriptor visualization with D=15), we can visually see the
effectiveness of learning a descriptor representation. The
relatively poor performance can be attributed to the reduced
density of matches per pair of images. Additionally, per-
formance can be improved by sampling non-matches from
non-corresponding matches so that there is some separation
between the projected points themselves. Also, performance
decreased with a smaller descriptor space, which makes
sense as large descriptor spaces should be able to encode
more information about the object, although this has an
added computational cost as it is very high dimensional.

Figure 3. Domain randomized input samples into the dense corre-
spondence mapping network

Figure 4. Left: input sample, Right: output of dense descriptor
network using D=3

Figure 5. Left: Reference image with pixel, Right: interpolated
location of corresponding pixel of dense descriptor through de-
scriptor closest in descriptor space with D=15

6.2. Quantative Evaluation

After generating the dataset with sufficient diversity, a pair
of samples are is fed into the network. After the output
descriptor mapping of the images are normalized, the 180
descriptor pixels for each pair of images within a batched
dataset are compared as follows to calculate pixel match
error:

1. Index dense descriptor corresponding to a 2D index in
descriptor image A

2. Find closest descriptor index in descriptor image B
through querying closest L2-distance of all descriptors
in descriptor image B

3. Count index successful if interpolated descriptor index
is within margin M from actual pixel location from
ground truth index projected from bandage 3D points
into image space

4. Average successes/total across batches



Descriptor Space Pixel Match Error
D = 15 50.3%
D = 3 40.3%

Table 1. For a descriptor space size of 15 and 3, the pixel match
error is computed according to the steps listed.

7. Conclusion
All in all, this semester’s results have shown that using
dense descriptors to represent the object state is promising.
Although, to get comparable results, there needs to be other
representations tested as well to set some baselines such as
(Simeonov et al., 2021), a recently published approach that
is more sample efficient and robust as it uses point clouds
as its base representation. Additionally it is probably more
efficient to start moving ahead with policy learning using
imitation learning and also developing a POC for the local
control policy in parallel to the state estimation work as
insights may be drawn across these methods.
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